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PARTITIONS APPROXIMATED 
BY FINITE COSINE-SERIES 

HARVEY DUBNER 

ABSTRACT. By using a specialized numerical Laplace transform inversion tech- 
nique the number of partitions are expressed by a finite cosine-series. The accu- 
racy of the results is only limited by the accuracy of computation and available 
computer time. The method is general and is applicable to all generating func- 
tions. 

1. INTRODUCTION 

In the late 1960s two papers appeared about numerical inversion of Laplace 
transforms [3, 11. Both papers were aimed at the engineering and probability 
world, where functions encountered were reasonably simple and 6-digit accu- 
racy was more than adequate. Now, with the ready availability of powerful 
PC computers and excellent public-domain software, it was decided to reeval- 
uate the utility of the power series expansion technique by applying it to the 
complicated generating functions found in partition theory. 

The number of partitions can be expressed as a finite cosine-series with the 
accuracy of the results being limited only by the accuracy of computation. Be- 
cause of this inherent accuracy it seems probable that there is some underlying 
theory yet to be discovered which would explain this behavior. 

2. OUTLINE OF THE METHOD 

Our objective is to find the coefficients of the power series represented by a 
given generating function. The outline of the theory of [1] which we will use is 
as follows: 

1. From a given generating function f(z) we define an auxiliary function 
g(t) such that for integral values of t, g(n) gives the coefficients of the power 
series of the generating function. 

2. The Laplace transform, G(s), of g(t) is obtained trivially from g(t). 
3. The inverse Laplace transform, g(t), of G(s) is approximated by an 

infinite cosine-series. 
4. Since only integral values of t are needed, the infinite cosine-series can 

be converted to a finite cosine-series by using various symmetry and periodicity 
properties and introducing the generalized Riemann zeta function. 
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5. Although the Riemann zeta function consists of an infinite number of 
terms, it is expandable asymptotically so that it can be calculated efficiently to 
a high degree of accuracy. 

6. This finite cosine-series can be used to numerically approximate the coeffi- 
cients in the power series of the generating function. The accuracy of the results 
is completely determined by the arithmetic accuracy of the computations and 
by the time available for the calculations. 

3. LAPLACE TRANSFORM OF A GENERATING FUNCTION 

We are given a generating function f (z) which has a power series expansion, 
00 

( 1 ) f (z) = Z A(n)zn. 
n=O 

Define a continuous function g(t) such that g(n) = A(n- 1) with a straight line 
between g(n) and g(n + 1), and g(t) = 0 for t < 0. The Laplace transform 
of g(t) is 

00 

(2) G(s) = s-2( 1 - e-5)2 E A(n)e-ns. 
n=O 

Perhaps the easiest way to see that G(s) is the Laplace transform of g(t) is 
to consider g(t) as the sum of a series of triangles with coordinates (n, 0), 
(n + 1, A(n)), (n + 2, 0). The Laplace transform of each triangle is easy to 
derive, and (2) is the sum of these transforms. However, from (1), 

00 

Z A(n)e-ns = f(e-S); 
n=O 

therefore, 

(3) G(s) = s-2(1 - e-s)2f(e-s). 

This determines the Laplace transform of g(t) trivially from the given func- 
tion f (z) by the transformation z = exp(-s) . Then, having obtained G(s) , we 
invert it to find the function g(t), which by virtue of its definition determines 
the coefficients 

(4) A(n) = g(n + 1). 

4. INVERTING THE LAPLACE TRANSFORM 

For generating functions encountered in combinatorial theory it is almost 
always impossible to find an exact inversion for (3). However, the methods 
of [3, 1] can be used to numerically invert these functions, but the question is 
whether the accuracy of the method is adequate when applied to complicated 
partition functions. What follows is a short summary of the inversion theory. 

An approximation formula for the Laplace transform inversion integral is 
given by the following infinite series: 

2eat = [0 rta) +le G 1N (5) g(t) = N ~ [ Re{G(a)} +Z RejGya + N) Cos Nt] 
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The error which results from replacing the integral by the infinite series is of 
the order exp(-aN), provided we restrict t to the interval 0 < t < N/2. In 
practice, selecting the largest value of t determines N, which together with the 
desired error limit determines a. 

There still is the difficulty that the series extends to infinity. Truncation er- 
ror can be large and is usually beyond our control. However, by only requiring 
answers for integral values of t and using various periodicity properties, the in- 
finite series can actually be summed completely by making use of the generalized 
Riemann zeta function. 

The relevant equations are 
2N- 1 

(6) g(m) = 2 exp(am) E C cos n7rm 
N LdCcsN 

n=O 

(7) s=a+ Ni1 

(8) Cn = Re[Sn (a, N)(1 - e-s)2f(e-s)], 

(9) Sn(a, N) = a (s+2k7li)2 - 2a2 
k=O 

( kr)2 2 

where Jon is the Kronecker delta function, 

(10) N>2m, 

and 

a=E (11) a=-N. 

In [1] it is shown how (9) is related to the generalized Riemann zeta function, 
which in turn can be expanded in an asymptotic series involving the Bernoulli 
numbers, 

(12) ( 
(k= 

+ w)2 (E + +w) 2(L + w)2 +6(L + W)3 

1 1 3617 
30(L+w)5 42(L+w)7 510(L+w)17 

with an error in the order of 50/(L + w)19. For L = 1000, this gives the 
generalized zeta function to about 5 5 digits while only requiring the summation 
of about 1000 terms. Equation (9) can be rewritten as 

(13) Sn(a, N)= 4 z(2, w) 2on 

where 

(14) w n _ a i. 

In practice, N is selected based on (9); E and L are chosen based on error 
considerations (see below). Equation (8), with (11), (7), (12), (13), and (14), 
is used to calculate the coefficients Cn of the cosine-series. Equations (6) and 
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(4) are used to calculate the coefficients A(n) of the power series of the given 
generating function. 

5. ACCURACY OF CALCULATION 

There are three sources of error in the above calculations: 
1. The theoretical error inherent in the inversion method. One of the strong 

points of the method is its tight error control. This error is about exp(-E), 
and there is no theoretical limit for E. For E = 70, the error is about 10-30. 

2. The error in calculating the generalized zeta function. As shown above, 
this error can be kept quite small without using excessive computer time. 

3. Error due to arithmetic precision limitations. This method requires high- 
precision calculations on complex numbers. Fortunately, there is a public- 
domain program for PC's, called UBASIC, ideally suited to this problem. It 
can process up to 2600-digit numbers, and no special handling is necessary for 
the complex domain. It is also aimed at the number theory world with appro- 
priate built-in functions. For a discussion of UBASIC see [2]. Since any desired 
precision is available, this error can be ignored. 

In theory, E can be made as large as one wants, making the error due to 
this source effectively zero. This would indeed be true except that there is an 
interaction between errors. In (6), the multiplying term exp(am) = exp(Em/N) 
grows exponentially with E. Since the answer must remain virtually the same 
as E grows, the cosine-series sum must decrease exponentially with E. Thus, 
the errors introduced by the zeta function become proportionately larger. 

Searching for maximums resulted in the following table based on the accuracy 
of the term corresponding to m = N/2 in (6): 

E L Accuracy 

70 100 25 digits 

90 500 34 digits 

105 2000 39 digits 

120 6000 45 digits 

That is, if 25-digit accuracy were required then L = 100, and E = 70 would be 
an optimum choice. For L = 100, increasing E to 100 decreases the accuracy 
to 19 digits. Dropping E to 50 decreases the accuracy to 18 digits. 

6. ATTENUATION 

When experimenting with this method, it soon becomes apparent that more 
accuracy is obtained when the target coefficients are more uniform. Often, a 
simple transformation can add several digits of accuracy with little computa- 
tional penalty. In (1), replace z by tz, so that 

00 

(15) f'(z) = E [A(n)tn]zn. 
n=O 

For t < 1 , the new coefficient in brackets has been attenuated by the factor tn. 
To compensate, g(m) in (6) must be divided by tn. One approach is to do a 



PARTITIONS APPROXIMATED BY FINITE COSINE-SERIES 733 

fast calculation at low accuracy, determine t so that the answers will be more 
uniform, then do the final, more accurate calculation. 

7. UNRESTRICTED PARTITIONS 

The generating function for the number of unrestricted partitions of n is [4, 

pp. 273-296], 
00 

(16) F~x) = 
(1 - X)(1 - X2)(1 -X3)... 1 + p(n)Xn. 

If the maximum n of interest is m, then the infinite product in the denom- 
inator can be terminated after m terms. The degree of this polynomial is 
m(m - 1)/2. For m = 500, the degree is about 125,000! We applied our 
theory to compute p(n) up to 500. 

From m = 500, N should be 1000, and therefore 2000 terms in the cosine- 
series are required. Knowing that p(500) has 22 digits, we set E = 70, L = 
100, and attenuation = 0.9 (since (0.9)500 10-23). The results are shown in 
Table 1. It took about one hour to do the calculations on a PC386, running at 
20 MHz. 

TABLE 1 

Unrestricted partitions 

2000 Terms E=70 L=100 

96-digit arithmetic Attenuation=.9 

n Value Error 

0 1 2.8 * 10-"' 
50 204226 7.8 * 10-" 

100 190569292 8.9 * 10-" 
150 40853235313 5.8 * 10-30 
200 3972999029388 3.9 * 10-21 

250 230793554364681 2.5 * 10-22 

300 9253082936723602 1.6 * 10-18 
350 279363328483702152 1.0 * 10-14 

400 6727090051741041926 6.7 * 101 

450 134508188001572923840 4.3 * 10-7 

500 2300165032574323995027 2.7 * 10-3 

TABLE 2 
Cosine-coefficients for unrestricted partitions 

40 Terms E=70 L=100 96-digit arithmetic Attenuation=1.0 

n Cn _ __ 

0 0.0155834820 20 -0.0146691001 
1 0.0550938561 21 -0.0170261156 
2 0.0541519010 22 -0.0190597232 
3 0.0524163367 23 -0.0207842276 
4 0.0499495263 24 -0.0222179896 
5 0.0468339096 25 -0.0233824799 
6 0.0431664802 26 -0.0243013537 
7 0.0390529749 27 -0.0249995712 
8 0.0346023496 28 -0.0255025890 
9 0.0299219682 29 -0.0258356452 

10 0.0251137590 30 -0.0260231517 
11 0.0202714114 31 -0.0260882070 
12 0.0154785584 32 -0.0260522300 
13 0.0108077954 33 -0.0259347124 
14 0.0063203534 34 -0.0257530816 
15 0.0020662418 35 -0.0255226606 
16 -0.0019152981 36 -0.0252567095 
17 -0.0055951495 37 -0.0249665300 
18 -0.0089535687 38 -0.0246616146 
19 -0.0119793746 39 -0.0243498208 
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TABLE 3 
Unrestricted partitions 

40 Terms E=70 L=100 

96-digit arithmetic Attenuation=1.0 

n Value Error 

0 1.00000 2.0 * 10-"' 
1 1.00000 1.6 * 10-37 

2 2.00000 4.4 * 10" 
3 3.00000 1.4 * 10" 
4 5.00000 4.6 * 10" 
5 7.00000 1.5 * 1031 
6 11.00000 5.0 * 1030 
7 15.00000 1.6 * 10-28 
8 22.00000 5.5 * 10-27 

9 30.00000 1.8 * 10-25 

10 42.00000 7.7 * 10-24 
11 56.00000 1.6 * 10-21 
12 77.00000 1.2 * 1018 
13 101.00000 1.1 * lo-,, 
14 135.00000 9.9 * lo-,, 
15 176.00000 8.6 * 10`0 
16 231.00000 7.5 * 10-7 

17 297.00065 
18 385.57174 correct answer=385 
19 980.00000 correct answer=490 
20 422830.76599 correct answer=627 

For small values of n, the calculations are accurate to about 40 significant 
digits. The accuracy systematically decreases to 24 digits as n increases to 500. 
Although the numbers change with the problem, the printout always looks like 
Table 1 when the answers are known to be integers. We repeated the same 
calculation with E = 105 and L = 2000. The accuracy at n = 500 increased 
to 43 significant digits. However, the computer time increased to nine hours. 

For illustrative purposes, the same calculation was made but with only 40 
cosine terms. The cosine-coefficients (truncated) are listed in Table 2, and the 
partitions are shown in Table 3. With 40 terms, high accuracy is assured only 
up to n = 10, but we extended the calculations to 20, with typical results. The 
cosine printout is also typical, but is not predictable (yet). 

8. MORE COMPLICATED FUNCTION 

There are more direct and faster methods for enumerating unrestricted par- 
titions. However, this cosine-series method can be the most effective way to 
numerically evaluate other partition and combinatorial functions. For exam- 
ple, consider the number of ways n similar objects can be distributed into r 
different cells, including unrestricted partitions of the objects in each cell, a 
problem from graph theory. This is equivalent to the r-fold convolution of 
unrestricted partitions of n objects in one cell. 

The generating function for this is simply equation (16) raised to the rth 
power, 

(17) F(x) = ((1 -x)( I-X2)(1-X3) ) 
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TABLE 4 
Unrestricted partitions into 100 cells 

160 Terms E=90 L=500 96-digit arithmetic Attenuation=.1 

Zeros After 
n Number of Partitions Decimal Point 

0___ 1.0000000000-------------------------------------- 61______ 

0 1.0000000000 61 
1 100.0000000000 59 
2 5150.0000000000 58 
3 181800.0000000000 57 
4 4941425.0000000000 55 
5 110162620.0000000000 54 
6 2095845950.0000000000 53 
7 34962917400.0000000000 52 
8 521585614000.0000000000 52 
9 7062897346700.0000000000 51 

10 87828985857380.0000000000 49 
11 1012388182996200.0000000000 47 
12 10900114289905025.0000000000 46 
13 110320020147886800.0000000000 44 
14 1055240483760370850.0000000000 43 
15 9583361158333259760.0000000000 41 
16 82961603673953999475.0000000000 39 
17 686960321073922256900.0000000000 38 
18 5457597221300936398800.0000000000 36 
19 41711405649406950264000.0000000000 35 
20 307419968899118268037235.0000000000 33 
21 2189601546878826111425200.0000000000 32 
22 15100553174874832471229300.0000000000 30 
23 101012304110994536378731800.0000000000 28 
24 656445643900578541883392625.0000000000 27 
25 4150449074229675657676600124.0000000000 25 
26 25564584111094035554187276350.0000000000 24 
27 153588326674996231668155611600.0000000000 22 
28 901032337861237426226358548275.0000000000 21 
29 5166958969734300590443691341700.0000000000 19 
30 28990702304337209570816847100720.0000000000 17 
31 159293636023107930969242863847000.0000000000 16 
32 857855565668207446850114468890875.0000000000 14 
33 4531498857844668075446982931497600.0000000000 13 
34 23496084642238776329323210516601900.0000000000 11 
35 11966553360513908640302793104090i3800.0000000000 10 
36 599016111555008151654846267275495275.0000000034 8 
37 2948920386550115622669826037009108500.0000001264 6 
38 14285215637926456305408040948501468200.0000046986 5 
39 68130236400679543757786293964095809800.0001745764 3 
40 320066066129413431354631633486042155940.0064863304 2 

In the cosine method, this is accomplished by adding one instruction to the 
program, resulting in a negligible amount of additional computer time. The 
results are shown in Table 4 for r = 100. 

9. DiscusSION 

This method for numerically evaluating generating functions by expansion 
into a finite cosine-series produces remarkably accurate results. It is even more 
impressive when one realizes that determining the number of unrestricted par- 
titions of 500 is equivalent to calculating the five-hundredth derivative of a 
function, which includes a 125,000th-degree polynomial, with 25-digit accu- 
racy. 

As a special case, this method gives a closed-form expression for the number 
of partitions, restricted or unrestricted. Although this is an approximation, in 
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the limit as one parameter E becomes infinite, the expression becomes exact. 
This may be a fertile area for developing new reasonably simple expressions for 
partition functions. 
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